800.227.0627

Primers for Respiratory Virus Diagnostics

Several viruses can infect the lower and upper respiratory tract of us humans. The respiratory system allows us to breathe. The respiratory system includes several organs and structures needed to exchange gases such as oxygen (in) and carbon dioxide (out). Parts of the respiratory system are the nose and nasal cavity, the sinuses, mouth, throat, voice box, windpipe, diaphragm, and the lungs. Many common viral infections target the upper respiratory system causing severe symptoms in infants, the elderly, and patients with lung or heart problems.

The list of common respiratory viruses includes the epidemic influenza viruses A, B, C, avian influenza viruses, parainfluenza viruses 1–4, adenoviruses, coronaviruses, orthohantaviruses, and respiratory syncytial virus and human metapneumovirus, as well as rhinoviruses.

Symptoms of different respiratory infections, also known as clinical presentation, caused by various viral pathogens, can be very similar. Hence, the correct diagnosis is quite tricky. A rapid virological method will allow a specific and sensitive diagnosis at an early stage of the infection. Significant advances in modern molecular technics have enabled the speedy and sensitive detection of viral pathogens. Polymerase chain reaction (PCR) based methods are now considered as the gold standard of viral assays. For many RNA viruses, including respiratory viruses, multiplex reverse transcription (RT)-PCR assay-based diagnosis allows rapid, sensitive, and specific detection.


PCR primers and probes for respiratory syncytial viruses A and B and parainfluenzavirus 3, causing bronchiolitis in children.

Eugene-Ruellan et al., in 1998, developed a reverse-transcription-PCR and hybridization-enzyme immunoassay (RT-PCR-EIA) for the detection and identification of significant bronchiolitis agents in infants. Bronchiolitis is a common lung infection in young children and infants. Bronchiolitis refers to inflammation and congestion in the small airways, also known as bronchioles of the lung. In children and infants, the respiratory syncytial viruses A and B (RSVA and RSVB) and parainfluenzavirus 3 (PIV3) cause bronchiolitis of the lower respiratory tract.

For virus diagnosis, the research group designed two primer sets (P1-P2 and P1-P3) using sequences in the polymerase L gene's conserved region. This molecular method allows detection in a single step and paramyxoviruses RSVA, RSVB, and PIV3 typing. Please review the alignment of the functional motifs A and C in the viral L gene in Eugene-Ruellan et al.


Table 1:
PCR primers and probes for respiratory syncytial viruses A and B and parainfluenzavirus 3.


Virus(es)

Target gene


Forward primer(s)

(5’–3’)


Reverse primer(s)

(5’–3’)


Probe(s)

RSVA,

 PIV3,

 Sendai,

PIV2,

MEAS,

MUMP,

SV5,

NDV

Functional motifs A and C of the L polymerase gene 

 P1:

 ACAACAGATCTCAGCAAAT

 P2:

 CTATTGCTTGATTGTCACC 

 

 P3: 

 CTATTGCTTGATTGTCTCC

 RSVA probe

     5′-2289---------------------------2250-3′
 
TACATTGTTAGGATCTACAGTATGATCTCCTATATAGGGG


   RSVB probe:

  5′-------------------------------2250-3′
  AACTTCATTAAGATTGACAACATGATCCTTTATGAAAGGA


   PIV3 probe:

  5′-2095-------------------------2056-3′
 
GAGGGTGTAACCAATTAAACAATTTATTTAATCCAAATA

 

 

 

 

  Note: Probes are biotinylated at the 5’-end.


Primers for influenza viruses, parainfluenza viruses, adenoviruses, coronaviruses, orthohantaviruses, respiratory syncytial virus and human metapneumovirus, and rhinoviruses.


Coiras et al., in 2004, developed a multiplex RT-nested PCR assay for the detection and identification of several respiratory viruses.These include the human parainfluenza viruses types 1, 2, 3, and 4AB, the coronaviruses type 229E and OC43, and generic human enteroviruses and rhinoviruses. The researchers designed primers selecting sequences from the conserved regions of haemagglutinin genes, the conserved regions of coronavirus spike protein genes, and the polyprotein gene of rhinoviruses and enteroviruses, between the 5’-non-coding region (5’-NCR) and VP4/VP2 regions. Table 1 lists GenBank accession numbers of the viral sequences,  sequences, and properties of all primers studied.


Table 2: Primers for Respiratory Viruses including Human Parainfluenza Viruses (Parainf.), Coronaviruses, Enteroviruses (Enterov.), and Rhinoviruses (Rhinov.) Used in the First Round Multiplex RT-PCR and in the Following Nested PCR (Adapted from Coiras et al., 2004).

Amplification steps and primera

Sequence (5’-3’)

Gene

Gene position

Melting temp (°C)

G + C content (%)

Amplicon size (bp)

RT-PCRa

 

 

 

 

 

 

1-PIV13

AGGWTGYSMRGATATAGGRAARTCATA

HA

Parainf.1 (641-667)

Parainf.3 (635-661)

52–60

30–48

Parainf.1 (635)

Parainf.3 (635)

2-PIV13

CTWGTATATATRTAGATCTTKTTRCCTAGT

HA

Parainf.1 (1277-1248) Parainf.3 (1270-1241)

52–56

23–33

 

1-PIV2

TAATTCCTCTTAAAATTGACAGTATCGA

HA

Parainf.2 (259-286)

53

29

Parainf.2 (683) Parainf.4AB (1070)

1-PIV4

ATCCAGARRGACGTCACATCAACTCAT

5’NCR-HA

Parainf.4 (107-81)c

57–60

41–48

 

2-PIV24

TRAGRCCMCCATAYAMRGGAAATA

HA

Parainf.2 (942-919)

Parainf.4

(963-940)

49–59

29–54

 

1-HcoV

TGTGCCATAGARGAYWTACTTTTT

SP

229E

 (2068-2090)

 OC43 (2727-2750)

49–52

29–38

229E (851)

 OC43 (806)

2-HcoV

AACCGCTTKYACCAKCAAYGCACA

SP

229E (2919-2896)

OC43 (3533-3511)

54–61

42–58

 

1-EV/RV

CTCCGGCCCCTGAATRYGGCTAA

5’NCR-VP4/VP2

Enterov. 445-467d

59–62

57–65

Enterov. (755)

Rhinov.

(639)

2-EV/RV

TCIGGIARYTTCCASYACCAICC

5’NCR-VP4/VP2

Rhinov.1200-1178

53–64

43–68

 

Nestedb

 

 

 

 

 

 

3-PIV13

ACGACAAYAGGAARTCATGYTCT

HA

Parainf.1 (754-776)

Parainf.3 (748-770)

50–55

35–48

Parainf.1 (439)

Parainf.3

(390)

4-PIV1

GACAACAATCTTTGGCCTATCAGATA

HA

Parainf.1 (1193-1168)

55

38

 

4-PIV3

GAGTTGACCATCCTYCTRTCTGAAAAC

HA

Parainf.3 (1138-1112)

57–60

41–48

 

3-PIV24

CYMAYGGRTGYAYTMGAATWCCATCATT

HA

Parainf.2 (487-514)

Parainf.4 (509-536)

53–63

29–54

Parainf.2 (297)

Parainf.4AB (174)

4-PIV2

GCTAGATCAGTTGTGGCATAATCT

HA

Parainf.2 784-761

54

42

 

4-PIV4

TGACTATRCTCGACYTTRAAATAAGG

HA

Parainf.4 683-358

52–56

31–42

 

3-HcoV

TTGTGCGCAATGTTATAAWGGYAT

SP

229E (2174–2197)

OC43 (2831-2854)

51–52

33–38

229E (630)

OC43 (587)

4-HcoV

GATAATRTGAGTRCCATTWCCACA

SP

229E (2804–2781)

OC43 (3418–3696)

51–54

32–42

 

3-EV/RV

ACCRASTACTTTGGGTRWCCGTG

5’NCR-VP4/VP2

Enterov. 536–559c

55–59

48–57

Enterov. (226)

Rhinov.

(110)

4-EV/RV

CTGTGTTGAWACYTGAGCICCCA

5’NCR-VP4/VP2

Rhinov.762–743

55–59

48–57

 


a1, forward;2,reverse in first-round RT-PCR. b3, forward;4,reverse in nested PCR. cPrimer located up-stream from coding region for haemagglutinin gene. dGene position referred to Poliovirus1strain Sabin (Accession no. V01150). Note: All rhinoviruses have a deletion of approximately 116 bp as regards enteroviruses.

Gunson et al., in 2005, described a real-time RT-PCR multiplex assay for the detection of 12 respiratory viral infections using a triplex reaction. Specific labeled probes enabled the convenient interpretation of results as generated by the multiplex format.

Table 3: Primers and probes used in triplex real-time RT-PCR assays (Adapted from Gunson et al. in 2005).

Triplex

Pathogen

Primer(s) (5’–3’ ; [c] nM)

Probe (5’–3’); [c] nM

Target

 

 

 

 

 

1

Influenza A

AAAGCGAATTTCAGTGTGAT (1000)

6FAM-CCCTCTTCGGTGAAAGCCCT-BHQ (300)

NS1 gene

 

 

GAAGGCAATGTGAGATTT (500)

 

 

 

 

 

 

 

 

Influenza B

GTCCATCAAGCTCCAGTTTT (1000)

VIC-CTTTGCCATACTCAATGAACAAAC-TAMRA (300)

Nucleoprotein gene

 

 

TCTTCTTACAGCTTGCTTGC (500)

 

 

 

 

 

 

 

 

Human metapneumovirus

AACCGTGTACTAAGTGATGCACTC (500)

VIC-CTTTGCCATACTCAATGAACAAAC-TAMRA (300)

Nucleocapsid protein gene

 

 

CATTGTTTGACCGGCCCCATAA (500)

 

 

 

 

 

 

 

2

RSV A

AGATCAACTTCTGTCATCCAGCAA (1000)

6FAM-CACCATCCAACGGAGCACAGGAGAT-BHQ (300)

Nucleocapsid protein gene

 

 

TTCTGCACATCATAATTAGGAG (250)

 

 

 

 

 

 

 

 

RSV B

AAGATGCAAATCATAAATTCACAGGA (1000)

CY5-TTTCCCTTCCTAACCTGGACATA-BHQ (300)

 

 

 

TGATATCCAGCATCTTTAAGTA (1000)

 

 

 

 

 

 

 

 

Rhinovirus

TGGACAGGGTGTGAAGAGC (1000)

VIC-TCCTCCGGCCCCTGAATG-TAMRA (300)

Five untranslated region

 

 

CAAAGTAGTCGGTCCCATCC (1000)

 

 

 

 

 

 

 

3

Parainfluenza 1

ACCTACAAGGCAACAACATC (1000)

CY5-CAAACGATGGCTGAAAAAGGGA-BHQ (300)

HN gene

 

 

CTTCCTGCTGGTGTGTTAAT (500)

 

 

 

 

 

 

 

 

Parainfluenza 2

CCATTTACCTAAGTGATGGAA (1000)

VIC-AATCGCAAAAGCTGTTCAGTCAC-TAMRA (300)

HN gene

 

 

CGTGGCATAATCTTCTTTTT (1000)

 

 

 

 

 

 

 

 

Parainfluenza 3

CCAGGGATATAYTAYAAAGGCAAAA (1000)

6FAM-TGGRTGTTCAAGACCTCCATAYCCGAGAAA-BHQ (300)

HN gene

 

 

CCGGGRCACCCAGTTGTG (1000)

 

 

 

 

 

 

 

4

Coronvirus 229E

CAGTCAAATGGGCTGATGCA (1000)

6FAM-CCCTGACGACCACGTTGTGGTTCA-BHQ (300)

 

 

 

AAAGGGCTATAAAGAGAATAAGGTATTCT (1000)

 

 

 

 

 

 

 

 

Coronavirus OC43

CGATGAGGCTATTCCGACTAGGT (125)

CY5-TCCGCCTGGCACGGTACTCCCT-BHQ (300)

 

 

 

CCTTCCTGAGCCTTCAATATAGTAACC (1000)

 

 

 

 

 

 

 

 

Coronavirus NL63

ACGTACTTCTATTATGAAGCATGATATTAA (1000)

VIC-ATTGCCAAGGCTCCTAAACGTACAGGTGTT-TAMRA (300)

 

 

 

AGCAGATCTAATGTTATACTTAAAACTACG (1000)

 

 


Van de Pol et al., in 2007, used primers for real-time PCR diagnostic of respiratory viruses from patients admitted with respiratory symptoms. Diagnostic of specific respiratory viruses allows clinicians to initiate optimal patient management and initiate adequate (future) use of antiviral therapy and optimal infection control.

Table 4: Primers and probes for real-time PCR detection of Respiratory Syncytial Virus, Influenza Viruses, Parainfluenza Viruses, and Adenoviruses (Adapted from van de Pol et al., 2007).

Virus(es)

Target gene

Forward primer(s) (5’–3’)

Reverse primer(s) (5’–3’)

FAM -Probe(s)a-TAMRA or MGB

RSV A

Nucleocapsid

AGATCAACTTCTGTCATCCA GCAA

TTCTGCACATCATAATTAGG AGTATCAAT

CACCATCCAACGGAGCACAGGAGAT

RSV B

Nucleocapsid

AAGATGCAAATCATAAATTC ACAGGA

TGATATCCAGCATCTTTAAG TATCTTTATAGTG

TTCCCTTCCTAACCTGGACATAGCA TATAACATACCT

IV A

Matrix

AAGACCAATCCTGTCACCTC TGA

CAAAGCGTCTACGCTGCAGT CC

TTTGTGTTCACGCTCACCGT

IV B

Hemagglutinin

AAATACGGTGGATTAAACAA AAGCAA

CCAGCAATAGCTCCGAAGAA A

CACCCATATTGGGCAATTTCCTATGGC

PIV 1

Hemagglutinin-neuraminidase

TGATTTAAACCCGGTAATTT CTCAT

CCTTGTTCCTGCAGCTATTA CAGA

ACGACAACAGGAAATC

PIV 2

Hemagglutinin-neuraminidase

AGGACTATGAAAACCATTTA CCTAAGTGA

AAGCAAGTCTCAGTTCAGCT AGATCA

ATCAATCGCAAAAGCTGTTCAGTCACT GCTATAC

PIV 3

Hemagglutinin-neuraminidase

TGATGAAAGATCAGATTATG CATATC

CCGGGACACCCAGTTGTG

TGGACCAGGGATATACTACAAAGGCAA AATAATATTTCTC

PIV 4

Nucleocapsid

CAAAYGATCCACAGCAAAGA TTC

ATGTGGCCTGTAAGGAAAGC A

GTATCATCATCTGCCAAATCGGCAATT AAACA

AVs

Hexon

TTTGAGGTGGAYCCMATGGA

TTTGAGGTYGAYCCCATGGA

AGAASGGSGTRCGCAGGTA

AGAASGGTGTRCGCAGATA

ACCACGTCGAAAACTTCGAA

ACCACGTCGAAAACTTCAAA

ACACCGCGGCGTCA

 aFAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine; MGB, minor groove binding.

Sequence variations in probe binding sites affect detection of respiratory syncytial virus group B by real-time RT-PCR.

Kamau et al., in 2017, reported that direct immunofluorescence tests (IFATs) and multiplex real-time RT-PCR assays revealed discrepancies in observing an increasing number of RSV-B viruses not detected by PCR. Mismatches in primer and probe binding sites revealed by sequencing the nucleoprotein (N protein) and glycoprotein (G protein) genes were the cause. The researchers detected three (3) different mismatches in the probe-target sites of viruses not seen via PCR. These results allowed the research group to design new primers and probes.

Table 5: Primer and probes for the old and the new N rt-RT-PCR assays.

Assay

Forward Primer (5’–3’)

Reverse Primer (5’–3’)

Probe (5’–3’)

 

 

 

 

Old N*

AAGATGCAAATCATAAATTCACAGGA
(1248–1273)#

TGATATCCAGCATCTTTAAGTA
(1350–1329)#

VIC-TTTCCCTTCCTAACCTGGACATA-TAMRA
(1317–1294)#

New N**

GCATCATTGCTGTCATTAACTCAATT
(2009–2034)#

GGTGTACCTCTRTACTCTCCCATTATG
(2045–2070)#

VIC-TCAAGTGTGGTCYTAGGYAATGCAGC-TAMRA
(2107–2080)#

N gene RT-PCR

GCAAATAYAAARATGGCTCTTAGC

TTCCTTCAACTCTACTRCCCCC


#Human RSV N gene D00736 (GenBank, NCBI) used as reference sequence, *described in Gunson et al. 2005, **requires further validation and assessment.
 

Bio-Synthesis provides a full spectrum of high quality custom oligonucleotide modification services by direct solid-phase chemical synthesis or enzyme-assisted approaches to obtain artificially modified oligonucleotides containing backbone, base, sugar and inter-nucleotide linkages including messenger RNA.
Bio-Synthesis specialize in complex oligonucleotide modifications using phosphodiester backbone, purine and pyrimidine heterocyclic bases, and sugar modified nucleotides such as our patented 3rd generation Bridged Nucleic Acids.

Primer and Probes!


Reference

Bronchiolitis

M.T. Coiras, J.C. Aguilar, M.L. García, I. Casas, and P. Pérez-Breňa; Simultaneous Detection of Fourteen Respiratory Viruses in Clinical Specimens by Two Multiplex Reverse Transcription Nested-PCR Assays. Journal of Medical Virology 72:484–495 (2004). [PMC]

Eugene-Ruellan G, Freymuth F, Bahloul C, Badrane H, Vabret A, Tordo N. Detection of respiratory syncytial virus A and B and parainfluenzavirus 3 sequences in respiratory tracts of infants by a single PCR with primers targeted to the L-polymerase gene and differential hybridization. J Clin Microbiol. 1998 Mar;36(3):796-801. [PMC]

Gunson RN, Collins TC, Carman WF. Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions. J Clin Virol. 2005 Aug;33(4):341-4. [PMC]

Infectious Diseases


Kamau E, Agoti CN, Lewa CS, Oketch J, Owor BE, Otieno GP, Bett A, Cane PA, Nokes DJ. Recent sequence variation in probe binding site affected detection of respiratory syncytial virus group B by real-time RT-PCR. J Clin Virol. 2017 Mar; 88:21-25. [PMC]


Poch
O, Sauvaget I, Delarue M, Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding element. EMBO J. 1989;8:3867–3874. [PMC]

The Respiratory System

Alma C. van de Pol, Anton M. van Loon, Tom F. W. Wolfs, Nicolaas J. G. Jansen, Monique Nijhuis, Els Klein Breteler,1 Rob Schuurman, and John W. A. Rossen;  Increased Detection of Respiratory Syncytial Virus, Influenza Viruses, Parainfluenza Viruses, and Adenoviruses with Real-Time PCR in Samples from Patients with Respiratory Symptoms. JOURNAL OF CLINICAL MICROBIOLOGY, July 2007, p. 2260–2262. [PMC]

 

---...---