800.227.0627

Alzheimer’s disease: Toward the rational design of an effective vaccine

Abstract

The promising clinical results with the human monoclonal antibodies aducanumab and solanezumab targeting
β-amyloid in Alzheimer’s disease treatment, confirm both the amyloid cascade hypothesis and protective natural
immunity, while strengthening the immunotherapeutic approach. That aducanumab recognizes a conformational
epitope formed by oligomers emphasizes the need for whole β-amyloid, not just its B-cell epitopes as have been
the norm to avoid pro-inflammatory Th1-reactions.That truncated β-amyloid having N-terminal pyroglutamate is
present only in diseased brain implies a new useful vaccine antigen. Another relevant antigen is the tau protein,
which shows a close association and cooperativity with β-amyloid in exacerbating this disease. Hence, effective
vaccines may be polyvalent, presenting to the immune system a number of antigens relevant to induce an immune
response to prevent or slowdown the onset of this disease. The presence of both B and T cell epitopes in the antigens,
require a sole Th2 immunity to avert brain inflammation; a task that cannot be attain with adjuvants that under
any conditions induce Th1 and/or Th17 immunities. Hence, new vaccine adjuvants are need to safely induce Th2
while inhibiting Th1 immunity, an objective that can be achieved with certain fucosylated glycans or triterpene
glycosides, which apparently bind to the DC-SIGN lectin on dendritic cells polarizing the immune response toward
Th2 immunity. Because the triterpene glycosides have the pharmacophore needed to co-stimulate T cells, they may
ameliorate the T-cell anergy associated with immunosenescence and responsible for poor vaccine efficacy in the
elderly population, a critical issue for an Alzheimer’s vaccine.
 

Open PDF to read the full article


References
Note: the references below are cited when you read the full article linked to the PDF above

1.      Keller DM. Finally, a big win for a monoclonal in Alzheimer’s. Medscape. Mar 23, 2015. http://www.medscape.com/viewarticle/841856
 

2.      Brooks M. Solanezumab shows potential disease-modifying effect in AD. Medscape. July 22, 2015. http://www.medscape.com/viewarticle/848445
3.      Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002; 297: 353-356.
4.      Rizzi L, Rosset I, Roriz-Cruz M. Global epidemiology of dementia: Alzheimer’s and vascular types. Biomed Res Int. 2014; 2014:908915. http://dx.doi.org/10.1155/2014/908915
5.      Britschgi M, Olin CE, Johns HT, Johns HT, Takeda-Uchimura Y, LeMieux MC, et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci USA. 2009; 106: 12145-12150.
6.      Davis PR, Head E. Prevention approaches in a preclinical canine model of Alzheimer’s disease: benefits and challenges. Front. Pharmacol. 2014; 5:47.
7.      Philipson O, Lord A, Gumucio A, O’Callaghan P, Lannfelt L, Nilsson LNG. Animal models of amyloid-β-related pathologies in Alzheimer’s disease. FEBS J. 2010; 277: 1389-1409.  
8.      Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: Synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006338. doi: 10.1101/cshperspect.a006338.
9.      Younkin SG. Evidence that A beta 42 is the real culprit in Alzheimer’s disease. Ann Neurol. 1995; 37: 287-288.
10.  O’Nuallain B, Wetzel R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA. 2002; 99: 1485-1490.
11.  Merlini G, Belloti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003; 349: 583-596.
12.  Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging. 2006; 27: 570-575.
13.  Sakono M, Zako T. Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 2010; 277: 1348-1358.
14.  Gandy S. The role of amyloid beta accumulation in common forms of Alzheimer’s disease. J Clin Invest. 2005; 115: 1121-1129.
15.  Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, et al. Induction of tau pathology by intracerebral infusion of amyloid-β-containing brain extract and by amyloid-β-deposition in APP x Tau transgenic mice. Am J Pathol. 2007; 171: 2012-2020.
16.  Shipton OA, Leitz JR, Dworzak J, Acton CE, Tunbridge EM, Denk F, et al. Tau protein is required for amyloid β-induced impairment of hippocampal long-term potentiation. J Neurosci. 2011; 31: 1688-1692.
17.  Marciani DJ. Alzheimer’s disease vaccine development: A new strategy focusing on immune modulation. J Neuroimmunol. 2015; 287: 54-63.
18.  Wisniewski T, Boutajangout A. Vaccination as a therapeutic approach for Alzheimer’s disease. Mt Sinai J Med. 2010; 77: 17-31.
19.  Marciani DJ. Development of Alzheimer’s disease vaccines: a perspective. Austin Alzheimers J Parkinsons Dis. 2014; 1(1): 4.
20.  Dodel R, Balakrishnan K, Keyvani K, Deuster O, Neff F, Andrei-Selmer L-C, et al. Naturally occurring autoantibodies against β-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J Neurosci. 2011; 31: 5847-5854.
21.  Taguchi H, Planque S, Nishiyama Y, Symersky J, Boivin S, Szabo P, et al. Autoantibody-catalyzed hydrolysis of amyloid β peptide. J Biol Chem. 2008; 283: 4714-4722.
22.  Planque SA, Nishiyama Y, Sonoda S, Lin Y, Taguchi H, Hara M, et al. Specific amyloid β clearance by a catalytic antibody construct. J Biol Chem. 2015; 290: 10229-10241.
23.   Dardalhon V, Korn T, KuchrooVK, Anderson AC. Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun. 2008; 31:252-256.
24.  Akira S. Innate immunity and adjuvants. Phil Trans R Soc B. 2011; 366: 2748-2755.
25.  Szczepanik AM, Rampe D, Ringheim GE. Amyloid-β peptide fragments p3 and p4 induce pro-inflammatory cytokine and chemokine production in vitro and in vivo. J Neurochem. 2001; 77: 304-317.
26.  Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R, Dianzani U, et al. Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis. 2013; 2: 89-107.
27.   Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KHG, Lynch MA. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol. 2013; 190: 2241-2251.
28.  Leinenga G, Gotz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med. 2015; 7(278):278-33.
29.  Prins ND, Scheltens P. Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. Alzheimers Res Ther. 2013; 5(6): 56.
30.  Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble oligomers implies common mechanisms of Pathogenesis.            Science. 2003; 300: 486-489.
31.  Marciani DJ. New Th2 adjuvants for preventive and active immunotherapy of neurodegenerative proteinopathies. Drug Discov Today. 2014; 19: 912-920.
32.  Marciani DJ. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today. 2003; 8: 934-945.
33.  Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, et al. Inflammatory components in human Alzheimer’s disease and after active amyloid β42 immunization. Brain. 2013; 136: 2677-2696. 
34.  Erickson MA, Dohi K, Banks WA. Neuroinflammation: A common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation. 2012; 19:121-130.
35.  Perez-Garmendia R, Gevorkian G. Pyroglutamate-modified amyloid beta peptides: Emerging targets for Alzheimer’s disease immunotherapy. Curr Neuropharmacol. 2013; 11: 491-8. 
36.  Frost JL, Liu B, Kleinschmidt M, Schilling S, Demuth HU, Lemere CA. Passive immunization against pyroglutamate-3 amyloid-b reduces plaque burden in Alzheimer’s-like transgenic mice: a pilot study. Neurodegenerative Dis. 2012; 10 265-270.
37.  Vasilevko V, Pop V, Kim HJ, Saing T, Glabe CC, Milton S, et al. Linear and conformation specific antibodies in aged beagles after prolonged vaccination with aggregated Abeta. Neurobiol Dis. 2010; 39: 301-310.
38.  Glabe CG. Structural classification of toxic amyloid oligomers. J Biol Chem. 2008; 283: 29639-29643.
39.  Roeder AM, Roettger Y, Stündel A, Dodel R, Geyer A. Synthetic dimeric Aβ(28-40) mimics the complex epitope of a human anti-Aβ autoantibodies against toxic Aβ oligomers. J Biol Chem. 2013; 288: 27638-27645.
40.   Head E, Pop V, Vasilevko V, Hill MA, Saing T, Sarzosa F, et al. A two-year study with fibrillar β-amyloid (Aβ) immunization in aged canines: Effects on cognitive function and brain Aβ. J Neurosci. 2008; 28: 3555-3566.
41.  Marciani DJ, Pathak AK, Reynolds RG, Seitz L, May R. Altered immunomodulating and toxicological properties of degraded Quillaja saponaria Molina saponins. Int Immunopharmacol. 2001; 1: 813-818.
42.  Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des. 2011; 17: 3729-3740.
43.  Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE. Helminth parasites – masters of regulation. Immunol Rev. 2004; 201: 89-116.
44.  Carrera I, Etcheverría I, Fernández-Novoa L, Ruggero V, Lombardi M, Lakshmana MK, et al. A comparative evaluation of a novel vaccine in APP/PS1 mouse models of Alzheimers disease. Biomed Res Int. 2015; 2015:807146. doi: 10.1155/2015/807146.
45.  Thomas PG, Harn DA, Immune biasing by helminth glycans. Cell Microbiol. 2004; 6: 13-22.
46.  Wang Y, Da’Dara AA, Thomas PG, Harn DA, Dendritic cells activated by an anti-inflammatory agent induce CD4+ T helper type 2 responses without impairing CD8+ memory and effector cytotoxic T-lymphocyte responses. Immunology, 2009; 129: 406-417.
47.  Jeffrey S. More positive data on aducanumab in Alzheimer’s. Medscape May 11, 2015. http://www.medscape.com/viewarticle/844502.
48.  Eisen HN. Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol Res. 2014; 2: 381-392. 
49.  Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37.
50.  Lannfelt L, Relkin NR, Siemers ER. Amyloid-b-directed immunotherapy of Alzheimer’s disease. J Intern Med. 2014; 275: 284-295.
51.  Rasool S, Albay R, Martinez-Coria H, Breydo L, Wu J, Milton S, et al. Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice. Mol Neurodegener. 2012 ;7:37. doi: 10.1186/1750-1326-7-37.