

Integrated Solutions

Spaning Across Genomics, Proteomics and Cell Biology

Cell Penetrating Peptides

Bio-Synthesis Inc

612 E. Main St. Lewisville, Texas 75057

Phone: 972-420-8505 1-800-227-0627 Fax: 972-420-0442 E-mail: info@biosyn.com www.biosyn.com

tic and diagnostic agents have very poor cell permeability and low bioavailability. Cell penetrating peptides (CPPs), also known as protein transduction domains have the ability to translocate through the cell membranes. As such, they have received formidable attention in the current advances in drug delivery as promising tools to overcome drug delivery problems. These peptides have been used to deliver drugs, imaging agents, and other therapeutic biomolecules across the cell membrane into the cytoplasm.

Most prospective therapeu-

Although the mechanism of their intracellular translocation is not clear, the amino acid composition which gives them a net positive charge seems to play a key role in this process.¹ Different studies have hypothesized that internalization occurs via endocytosis, direct transport through the cell membrane or both. The primary structure of CPPs is generally composed of

cationic residues such as arginines and lysines. Several naturally occurring and synthetic CPPs have been investigated in delivery of various cargo such as

Commonly Used CPPs

1. Richard et al., J. Biol. Chem. 2003, 585-59

References

Polyarginine

BMV Gag- (7-25)

Pep1

2. Fonseca et al. Advanced Drug Delivery Reviews, 2009, 61, 953-964

ing peptides.

peutic applications.

nucleic acids, proteins, quan-

tum dots, contrast agents

molecules.² In all of these

studies, CPPs exhibited mini-

mal toxicity in biological

systems, suggesting their

potential as drug delivery

vehicles. The table below

highlights some of the most

common naturally occurring

and synthetic cell penetrat-

In this issue, we will be

discussing the various CPPs

and their advances in thera-

organic

small

and

Inside this issue:

TAT peptide Antennapedia Polyarginine Transportan Other drug delivery techniques; Dendrimers

Peptide Sequence HIV-1 TAT 48-60 GRKKRRQRRPPQ Antennapedia 43-58 (Penetratin) RQIKIWFQNRRMKWKK Transportan

GWTLNSAGGYLLGKINLKALAALAKKIL RRRRRRRR KETWWETWWTWWSQPKKKRKV **KMTRAQRRAAARRNRRWTAR**

Table 1. Sequences of commonly used cell penetrating peptides

Constrained Peptide Designs

>Head to tail backbone cyclization Side chain to side chain cyclization >Side Chain to backbone cyclization

Chemistries Used in Synthesis of Constrained **Peptides**

Copper Alkyne-Azide assisted Cycloaddition (CuAAC) >Hydrocarbon stapling >Lactam bridge forma tion >Disulfide bonds

TAT 47 - 57 TAT 47 - 57 Dye - labeled Custom TAT derivatives

The HIV-1 TAT₄₈₋₆₀ peptides is

derived from an 86-amino

acid TAT protein involved in

replication of HIV-1. Studies

have shown that the helical

domain of TAT protein

contains clusters of basic

amino acids and plays a

crucial role in translocation of

TAT peptides into the cells.¹

domain

This

References

Peptide

multiple arginines which plays a vital role in the intracellular translocation capability of TAT peptides. When one arginine residue is deleted, TAT peptides cell permeability is decreased by half.² HIV-1 TAT peptides have been used to deliver a variety biological molecules includ-

ing large proteins such as RNase A, β-galactosidase among other proteins.4,5 Other biomolecules that have successfully been transported into the cells by linking them to TAT peptides include; liposomes,⁶ nanoparticles,⁴ peptide nucleic acids, DNA, siRNA⁷ and small molecules.

1. Vives et al. J. Biol. Chem. 1997, 3. Berry et al., Nanomedicine, 2008, 1-12 272. 16010-16017 3, 357-365 6. Torchilin et al., PNAS, 2001, 98, 2. Tung and Weissleder, Adv. Drug 4. Torchilin et al., Drug Discovery 8786-8791 Del. Rev. 2003, 55, 281-29 Astriab-Fisher et al., Pharm. Res. Today: Technologies, 2008, 5, e95-2002, 19, 744-754 e103 5. Zhao et al., Med Res Rev, 2004, 24, Sequence

contains

YGRKKRRQRRR Dye-YGRKKRRQRRR

Cargo-K(Dye)-YGRKKRRQRRR

Antennapedia 43-58 (Penetratin)

Antennapedia 43-58, a 16 amino acid fragment from the third helix of Drosophila antennapedia protein, was shown to have the capability of translocating through cell membranes.¹ Similar to TAT peptides,

antennapedia have been used as a delivery system of various cargo through the cell membrane into the cytoplasm. Villa et. al. studies have shown that penetratin-PNA constructs effectively translocates into melanoma

cells.² More studies by Avignolo et al. have used antennapedia to transport monoclonal antibodies into the colorectal carcinoma cell lines (HCT116).3

Triphosphate

References

1. Derossi et al., J. Biol. Chem. 1994, 269, 10444-10450 2. Villa et al., FEBS letters, 2000, 473, 241-248

3. Avignolo et al., The FASEB Journal, 2008, 22, 1237-1245

Peptide	Sequence	
Antennapedia 43-58	RQIKIWFQNRRMKWKK	
Antennapedia 43-58 Dye - labeled	Dye-RQIKIWFQNRRMKWKK	
Custom Antennapedia 43-58 derivatives	Cargo-K(Dye)-RQIKIWFQNRRMKWKK	

Sequence

Polyarginines

Oligoarginines of 6-20

improve protease stability between the polyglutamic

Peptide

Transportan Transportan TP10 Transportan Dve - labeled

Lactam

Bridged Peptide

GWTLNSAGGYLLGKINLKALAALAKKIL Dye-RQIKIWFQNRRMKWKK AGGYLLGKINI KALAALAKKII

HIV TAT 48-60

Custom Oligonucleotides	residues have been studied extensively for their ability to penetrate into cytoplasm	has been investigated. Replacement of L-arginines with D-amino acids resulted	and polyarginine domains releases the polyarginine domain for intracellular	Transportan Dye - labeled AGGYLLGKINLKALAALAKKIL Custom Transportan derivatives Cargo-K(Dye)-GWTLNSAGGYLLGKINLKALAALAKKIL
Oligonucleotides Synthesis: >DNA and RNA Triphosphates >DNA up to 190 base pairs >Long RNA	penetrate into cytoplasm through the cell membrane. It was found that optimal cell membrane permeation is achieved by oligoarginines residues between 5 and 15. ¹ In particular, nona-arginine peptides were shown to have improved cell penetration efficiency compared to TAT peptides. ² Thus, most studies have utilized octa- and nona-arginine peptides as delivery medium for most biological molecules includ- ing siRNA, anticancer drugs, small molecules, proteins, peptides, and oligonucleotides. ^{2,3} Since oligoarginine peptides are the most commonly used CPPs, their optimization to reduce cell toxicity and References 1. Mitchell <i>et al.</i> , J. Pept. Res. 2000 , 56 318-325 2. Tung and Weissleder, Adv. Drug Del Rev 2003 , 55, 281-294	2007, 35, 5182-51914. Wender <i>et al.</i>, Proc. Natl. Acad. Sci.	 domain for intracellular translocation.⁶ It has been potrayed that the guanidino functional group plays a critical role in the intracellular translocation of oligoarginines peptides. Hence, several other guanidine containing molecules have been discovered. Wender et al., designed a polyguanidine peptoid derivative with improved cellular uptake compared to the TAT peptides and nonaarginine peptides containing D-amino acids.⁴ This derivatization enhanced protease stability while maintaining cell permeation capability. 5. Lee <i>el al.</i>, Mol. Biosyst., 2010, 6, 2049-2055 6. Aguilera <i>et al.</i>, Integ. Biol., 2009, 1, 371-381 	<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>
	Peptide	USA, 2000 , 97, 13003-13008 Sequence	1, 37 1-30 1	What Bio-Synthesis Inc. can do for your research
	(Arg)9	RRRRRRR	2	
	(D-Arg)9	rrrrrrr		
	(Arg)9 Dye - labeled	Dye-RRRRR	RRR-	DIOSYNTHESIS COMMITTED TO BIOMIC RESEARCH
	Custom (Arg)9 derivatives Cargo-K(Dye)-RRRRRRR		RRRRRRR	
		Transportan		Peptides Oligonucleotides Molecular Cell Biology Service
	Transportan is a 21-mer non- arginine chimera of N-terminal neuropeptide galanin and venom peptide mastoparan. ¹ Transportan has been used to deliver peptides, proteins, peptide	nucleic acids and small molecules into various cell lines. ² Several transportan analogs such as transportan 10, TP10, have been investigated. In TP10, the six N-terminal	amino acid residues have been truncated, yet this peptide retains the cell trans- locating capabilities of the original peptide due to its amphiphatic features. ³	Linear Peptides (upto 150-mer) Cyclic Peptides Cyclic Peptides Cyclic Peptides Disulfide Bridged Peptides Hydrocarbon Stapled Peptides CuAAC Stapled Peptides RNA RNA

References

1. Langel et al., Regul. Pept. 1996, 62, 47-52

2. Pooga et al., FASEB J. 2001, 15, 1451-1453 3. Lindgren et al., The Biochemical Journal, 2004, 377, 69-76